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Abstract. In this work, a final state wave function is constructed which represents a solution of the three-
body Schrödinger equation. The formulated wave function is superimposed of one basic analytical function
with various parameters. The coefficients of these basic functions involved in final state wave function can
be easily calculated from a set of linear equations. The coefficients depend only on incident energy of the
system. The process can also be prolonged for application to the problems more than three bodies.

PACS. 34.80.Dp Atomic excitation and ionization by electron impact – 34.10.+x General theories and
models of atomic and molecular collisions and interactions – 31.15.Ja Hyperspherical methods

1 Introduction

The combination of subtle correlation effects and the
difficult boundary conditions required to describe two
charged particles in the continuum have made ‘three-body
Coulomb problem’ one of the outstanding challenges of
atomic physics. Unfortunately, the Schrödinger equation
that is fundamental to these problems, only possesses an-
alytical solutions for two-body system, has no known an-
alytical solution for three-body cases. It is a testament
to the complexity of collision problems that proceeding
from two-body collisions to a three-body system has taken
almost a further century to formulate and solve numeri-
cally. The theories of Coulomb three-body problem can
be classified into three groups. Firstly, those are based on
‘Wannier theory’ [1]. Secondly, there is a section of theories
assuming approximate analytical expressions for the final
state wave function in which the correlated motion of the
three particles over all space is taken into account albeit
in an approximate way. Thirdly, there are theories which
abandon hope of an analytical or semi-analytical form,
and work fully numerically with the aim of developing a
method. At the commencement of collision theory, atomic
physicists have used approximation techniques to find an-
alytic and numerical solutions for Coulomb three-body
problems, such as several Born approximation [2–4]. In
1960s, Peterkop [5], Rudge and Seaton [6,7] independently
deduced the appropriate boundary conditions for electron-
hydrogen-ionization but their boundary condition is ex-
tremely cumbersome to apply to numerical calculations.
The leading term in the asymptotic expansion of the final
state wave function, again for the case where all particles
are well separated, was first obtained by Rosenberg [8]. In
various close-coupling calculations [9–12], final state wave
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functions are expanded in terms of basis functions and
ionization information are extracted from a solution of the
unknown expansion functions. Kato and Watanabe [13,14]
used hyperspherical coordinates and expanded the final
state wave functions in terms of hyper-radius dependent
angular functions. Matching with a wave function, which
satisfies a roughly correct boundary condition, they ob-
tained with remarkable success. Brauner et al. [15] and
later Berakdar [16] and Berakdar et al. [17,18] made use
of projection approach. They used the final state wave
functions which are asymptotically correct (or nearly so)
but are unlikely to be correct at finite distances. With
the immense development of computational resources in
the second half of the last century, there have been
several very successful computational approaches to the
three-body Coulomb problem like intermediate energy
R-matrix method [19], R-matrix with pseudostates [12],
time-dependent close-coupling [20], exterior complex scal-
ing [21], convergent close-coupling [22], hyperspherical R-
matrix method with semiclassical outgoing waves [23].
Another promising numerical approach for the electron-
hydrogen atom ionization problem is the hyperspherical
partial-wave approach [24–35], which is the base of the
present work.

The goal of this investigation was threefold. Firstly, to
construct a final state wave function for Coulomb three-
body problem. Secondly, to construct a basis of state
functions, these are generated final state wave function.
Finally, study Coulomb N -body problems by using this
approach. Here we prove that it is possible to generate a
set of basis states to construct final state wave functions
for Coulomb three-body problems, satisfy at the finite dis-
tances. The coefficients of the basis state functions are in-
dependent of any variable and can be obtained to solve a
homogeneous system of linear equations.
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2 Formulation of final state wave function

For precise information concerning Coulomb three-body
problems, one may solve accurately the Schrödinger equa-
tion for the scattering states Ψ

(−)
f (see Newton [36] for

definition) given by

HΨ
(−)
f = EΨ

(−)
f (1)

taking account of the appropriate boundary conditions. In
the hyperspherical partial wave theory Ψ

(−)
f is expanded in

terms of hyperspherical harmonics, which are functions of
five angular variables. The corresponding radial waves are
functions of one radial variable, the hyper radius R only.
The symmetrized wave Ψ

(−)
fs may be expanded in terms of

symmetrized hyperspherical harmonics φs
λ’s as [24,29]

Ψ
(−)
fs (R, ω) = 2

√
2
π

∑
λ

F s
λ(ρ)
ρ

5
2

φs
λ(ω), (2)

where F s
λ satisfies an infinite coupled set of equations

[
d2

dρ2
+ 1 − νµ (νµ + 1)

ρ2

]
F s

λ(ρ) +
∑
λ′

2 αs
λλ′

ρ
F s

λ′(ρ) = 0,

(3)
for each symmetry s (s = 0 for singlet and s = 1 for
triplet)and for each total angular momentum L (and its
projection M , and so also for a definite parity π). In the
above expression

αs
λλ′ = −〈φs

λ|C|φs
λ′ 〉/P, and

C = − 1
cosα

− 1
sin α

+
1

|r̂1 cosα − r̂2 sinα| ;

φs
λ(ω) =

1√
2
{Pn

l1l2(α)YLM
l1l2 (r̂1, r̂2)

+(−1)l1+l2−L+S+nPn
l2l1(α)YLM

l2l1 (r̂1, r̂2)},
l1 �= l2

=
1
2
{1 + (−1)−L+S+n}Pn

ll (α)YLM
ll (r̂1, r̂2)},

for l1 = l2 = l, (4)

where νµ = µ + 3
2 and µ = l1 + l2 + 2n (here λ denotes

the multiplet (l1, l2, n) depending on the context). Here
R =

√
r2
1 + r2

2 , α = atan(r2/r1), 	r1 = (r1, θ1, φ1), 	r2 =
(r2, θ2, φ2). Similarly P =

√
p2

a + p2
b , α0 = atan(pb/pa),

	pa = (pa, θa, φa), 	pb = (pb, θb, φb), and ρ = PR, and
ω0 = (α0, θa, φa, θb, φb), and a corresponding expression
for φs

λ(ω0) (similar expressions may be easily derived for
product of more than two outgoing charged particles).
Now we set

F s
λ(ρ) = ρ

∑
k

as
λkjk(ρ) + ρ

∑
l

bs
λljl+1/2(ρ) (5)

where all as
λk and bs

λl are independent of ρ, for the above
expression of F s

λ equation (3) reduces to

∑
k=0

[
1
ρ
jk(ρ)

{(
k − µ − 3

2

) (
k + µ +

5
2

)}
as

λk

+2jk(ρ)
∑
λ′

αs
λλ′as

λ′k

]
+

∑
l=0

[1
ρ
jl+1/2(ρ){(l − µ − 1)

× (l + µ + 3)}bs
λl + 2jl+1/2(ρ)

∑
λ′

αs
λλ′bs

λ′l

]
= 0. (6)

For convenience we again set,
{(

k − µ − 3
2

) (
k + µ +

5
2

)}
as

λk = Aλk

2
∑
λ′

αs
λλ′as

λ′k = Γλk

{(l − µ − 1)(l + µ + 3)}bs
λl = Bλl

2
∑
λ′

αs
λλ′bs

λ′l = ∆λl. (7)

Then equation (6) reduces to

∑
k=0

[1
ρ
jk(ρ)Aλk + jk(ρ)Γλk

]

+
∑
l=0

[1
ρ
jl+1/2(ρ)Bλl + jl+1/2(ρ)∆λl

]
= 0. (8)

Using the expansions of spherical Bessel functions

jk(ρ) =
∑
n=0

Cnkρ2n+k and jl+1/2(ρ) =
√

ρ
∑
n=0

C̄nlρ
2n+l

equation (8) becomes

∑
n,k

[
Mλ

nkρ2n+k−1 + Nλ
nkρ2n+k

]

+
√

ρ
∑
m,l

[
M̄λ

mlρ
2m+l−1 + N̄λ

mlρ
2m+l

]
= 0 (9)

where

Mλ
nk = AλkCnk, Nλ

nk = ΓλkCnk,

M̄λ
ml = BλlC̄ml, N̄λ

ml = ∆λlC̄ml.

After simplification we have

X(ρ) +
√

ρY (ρ) = 0 (10)

where

X(ρ) = Mλ
0,0

1
ρ

+
∑
k=0

k∑
n=0

[
Mλ

n,2k+1−2n + Nλ
n,2k−2n

]
ρ2k

+
∑
k=0

[ k+1∑
n=0

Mλ
n,2k+2−2n +

k∑
n=0

Nλ
n,2k+1−2n

]
ρ2k+1 (11)
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and

Y (ρ) = M̄λ
0,0

1
ρ

+
∑
l=0

l∑
m=0

[
M̄λ

m,2l+1−2m + N̄λ
m,2l−2m

]
ρ2l

+
∑
l=0

[ l+1∑
m=0

M̄λ
m,2l+2−2m +

l∑
m=0

N̄λ
m,2l+1−2m

]
ρ2l+1. (12)

Equating the coefficients of like power of ρ in equa-
tion (10), we get two sets of recurrence relations for as

λk
and bs

λl.
Recurrence relations for as

λks are

Aλ0C00 = 0
k∑

n=0

[
Aλ,2k+1−2nCn,2k+1−2n + Γλ,2k−2nCn,2k−2n

]
= 0

k+1∑
n=0

Aλ,2k+2−2nCn,2k+2−2n

+
k∑

n=0

Γλ,2k+1−2nCn,2k+1−2n = 0; (13)

and recurrence relations for bs
λls are

Bλ0C̄00 = 0
l∑

m=0

[
Bλ,2l+1−2mC̄m,2l+1−2m + ∆λ,2l−2mC̄m,2l−2m

]
= 0

l+1∑
m=0

Bλ,2l+2−2mC̄m,2l+2−2m

+
l∑

m=0

∆λ,2l+1−2mC̄m,2l+1−2m = 0. (14)

The recurrence relations for as
λk and bs

λl imply that all the
coefficients as

λk are equal to zero and the coefficients bs
λl are

nonzero for l ≥ µ+1. Finally, the symmetrized final state
wave function can be written in terms of hyperspherical
harmonics and spherical bessel functions as

Ψ
(−)
fs (ρ, ω) = 2

√
2
π

∑
λ,l=µ+1

bs
λl

ρ
3
2

jl+1/2(ρ)φs
λ(ω), (15)

or one can write the unsymmetrized final state wave func-
tion as

Ψ
(−)
f (r1, r2; r̂1, r̂2)=

√
2
π

∑
λ,l=µ+1

bλlfλl(r1, r2)YLM
l1l2 (r̂1, r̂2),

(16)
where the radial wave function for two charged particles is

fλl(r1, r2) =
1

(P
√

r2
1 + r2

2)3/2
jl+1/2

(
P

√
r2
1 + r2

2

)
Pn

l1l2(atan(r2/r1)).

(17)

3 Calculation

In this section, as an illustration we calculated the coeffi-
cient of bs

λl from the recurrence relations (14)

Bλ0C̄00 = 0. (18)

For l = 0,

Bλ1C̄01 + ∆λ0C̄00 = 0
Bλ2C̄02 + Bλ0C̄10 + ∆λ1C̄01 = 0. (19)

For l = 1,

Bλ3C̄03 + ∆λ2C̄02 + Bλ1C̄11 + ∆λ0C̄10 = 0

Bλ4C̄04 + Bλ2C̄12 + Bλ0C̄20 + ∆λ3C̄03 + ∆λ1C̄11 = 0.
(20)

It follows from equation (7); if i �= µ + 1 for l = i,
Bλi = 0 implies bs

λi = 0 and this value of bs
λi corresponds

to ∆λi = 0. Let us consider µ = 1, i.e., the first nonzero
coefficient is bs

λ2.

From equation (18), we get Bλ0 = 0 which corresponds
to bs

λ0 = 0 and ∆λ0 = 0.

It follows from equation (19a), Bλ1 = 0 which implies
bs
λ1 = 0 and ∆λ1 = 0.

Using the above values the set of equations (20) re-
duce to

Bλ3C̄03 + ∆λ2C̄02 = 0
Bλ4C̄04 + ∆λ3C̄03 = 0 (21)

or, rewrite the values of Bλ3, Bλ4, ∆λ2 and ∆λ3 in the
above equations we have

7C̄03b
s
λ3 + 2C̄02

∑
λ′

αs
λλ′bs

λ′2 = 0

16C̄04b
s
λ4 + 2C̄03

∑
λ′

αs
λλ′bs

λ′2 = 0. (22)

So, ultimately we can calculate bs
λl (for l ≥ 3) in terms of

bs
λ2 and the values of bs

λ2s depend on boundary condition.

4 Discussion

To construct the final state wave function, we produce
a basis set of analytical functions {ρ− 3

2 jl+1/2(ρ) φs
λ(ω)}.

The final wave function is a linear combination of the basic
analytical functions and the coefficients bs

λl can be calcu-
lated easily to solve the system of linear equations. From
basic wave function with different sets of parameters we
can analyze the processes precisely. The nature of the ba-
sic functions with different sets of parameters is very im-
portant to study any Coulomb three-body problems. The
radial parts fλl(r1, r2) (for various values of λ and l) of
the unsymmetrized final state wave function for P = 1
and l = µ + 1 are presented in Figure 1 for l1 = 1, l2 = 1
and n = 3; in Figure 2 for l1 = 10, l2 = 1 and n = 3; and
in Figure 3 for l1 = 1, l2 = 10 and n = 3.
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Fig. 1. (Color online) Radial part fλl(r1, r2) of the unsym-
metrized final state wave function for l1 = 1, l2 = 1, n = 3,
l = µ + 1 and P = 1.
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Fig. 2. (Color online) Radial part fλl(r1, r2) of the unsym-
metrized final state wave function for l1 = 10, l2 = 1, n = 3,
l = µ + 1 and P = 1.
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Fig. 3. (Color online) Radial part fλl(r1, r2) of the unsym-
metrized final state wave function for l1 = 1, l2 = 10, n = 3,
l = µ + 1 and P = 1.

5 Conclusion

Using this approach, one can easily calculate final state
wave function for Coulomb three-body problems without
taking any approximation. Here we considered Coulomb
three-body problems only, it should be noted that the
method can be extended for Coulomb N -body problems.
Our future plan is to study the system of linear equa-
tions: its necessary order, convergent condition, essential
triplets, generalized the process for N -body system, i.e.,

calculate the corresponding hyperspherical harmonics for
N -body system.
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